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General Instructions:

1) This is an open book exam. Calculators are permitted, but sharing of calculators between
students is not permitted.

2) Answer all 5 questions in the examination booklet provided. 

3) Each problem is worth 10 marks. Print clearly--illegible work will not be marked. Clearly
indicate the steps taken in your answers and identify the final solution to each part of the
question.

4) Make sure that your name, student number, and signature are written on the examination
booklet.
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1) Consider the two dimensional electrostatic problem shown in the figure.

a) Using the boundary conditions shown, determine the
matrix equation (do not solve) which would result
from applying a centered difference second order
approximation to solve for the grid potentials, φij, on
the mesh. (Use the numbering scheme shown in the
figure.)

b) Discuss how you would use symmetry to reduce the
size of the numerical problem.

c) Using the grid potentials, φij, write down a formula for
the capacitance between the centre and outer
conductors.

2) Consider the parallel-plate capacitor depicted in the figure with plate sizes much larger than
the distance between them (i.e. a one-dimensional problem). The space between the plates is
filled with a uniformly charged dielectric material having a relative permitivity of εr = 2.0
and a charge density of ρ =10-6 [C/m3].

a) Solve the problem analytically by integrating
Poisson’s equation.

b) Discretize the domain into three equal finite
elements.

c) Assuming the linear interpolation, derive the
matrix [S] for each element.

d) Assemble the set of algebraic equations for the
nodal values of solution using the finite element
method.

e) Introduce boundary conditions.

f) Solve the set of algebraic equations.

g) Compare analytical and numerical solutions at
nodes.

3) For the finite element mesh shown in in the figure, determine
the total stiffness matrix [S] before and after introducing
boundary conditions, assuming that the problem is governed
by the Laplace equation in Cartesian coordinates and linear
interpolation is used. All triangles are equilateral and the
following Dirichlet boundary conditions are specified:

V1 = 0, V2 = 0, V3 = 100 and V4 = 100.
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4) For the mesh given in the figure, number all nodes according to the Cuthill-McKee
algorithm. Repeat the procedure twice treating nodes A and B as root nodes. In both cases
determine the half-bandwith of the matrix.

5) The lossy transmission line equations can be written in matrix form in terms of the voltage,
V(x, t) [V], and the current, I(x, t) [A], along the line as:

where L is the per unit length inductance [H/m], C is the per unit length capacitance [F/m], R
is the per unit length resistance [Ω/m], and G is the per unit length conductance [S/m].
Consider the following grid functions and interlaced grid:

Using the following second order accurate centered difference approximations for the
drivatives in the lossy transmission line equations:

, ,

, ,

(a) Determine a set of stable explicit update equations which approximate the above
coupled partial differential equations. What is the stability limit for your scheme?

(b) Draw the computational molecule for the resulting scheme using solid dots for the
voltage and hollow dots for the current.

(c) How does your scheme change at a boundary where the per unit length inductance, L,
changes abruptly? Which component would you put at the boundary? (Draw this
boundary on a sample grid.)
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